Gitlab CI/CD

Christoff Visser
christoff@iij.ad.jp

11)

Internet Initiative Japan

Introducing git

Introducing git

& Today, 12:09PM

100%

~

This is line number one

This is line number two, edited later

This is line 3

Total: 1 edit

Version history

All versions

TODAY

July 31, 12:09PM
Current version
® Christoff Visser

WEDNESDAY

July 26, 11:58 AM
® Christoff Visser

TUESDAY

» July 25,1:24PM
® Christoff Visser

July 25, 1:19PM
® Christoff Visser

Distributed Workflows

dictator

blessed
repository

lieutenant

developer developer' developer
public public public

Image source: https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

Where to store the repository?

e GitHub, Gitlab, Bitbucket, AWS CodeCommit

e Gitlab

 Self-host your own instance
* Some more freedom with the CI/CD

What is CI/CD

e Continuous Integration (Cl)

OOOOOOOOOO

[
© ' QE
 Continuous Delivery (CD) ‘ I o e © ©
CI PIPELINE CD PIPELINE

EEEEEEEEEE

e Continuous Deployment (CD)

Where does the code run

* Code typically runs inside a docker container as a job

* One can use available popular containers like alpine, ubuntu, centos,
or application specific containers

* One can also build own container using base image of any of the
available containers if installing multiple packages

And where does the job run?

T\épically a runner - can be shared runner offered by popular hosted Git providers
like Gitlab, Github etc and also dedicated runners which you can host on your
machine (desktop/server)

* Runner can be a program installed & running on machine or simply a docker
image with special permissions

* One can have multiple runners configured in a project & use them as needed
across various tasks. E.g task 1 on runner on serverl, task 2 on runner on server2

etc

. G]?glc}cidea to have basic understanding of docker ecosystem to make efficient use
o) D

Key Objective

* Make use of extremely low code, fast to deploy tool like Ansible to
automate or semi-automate repetitive tasks

* Trigger Ansible as a docker container running Ansible on runner of
your choice

* Trigger (Ansible + Docker) via CI/CD pipelines

Stage & Jobs

* Config is divided in stages
* Each stage can have one or more jobs which run in parallel (by default)
e Stages run sequentially

* Any job can have dependency on any other job if needed

Jobs

e Each actionis run as a job
* Ajobrunsinside a docker container

* Job can have any script (bash, python etc) or Ansible Playbook or anything that is packed in
container

* Job can have dependency on any other job:
* runjob 2 only when job 1 is finished
* run job 3 only when job 1 has failed

* Jobs can be triggered automatically upon commit, via web Ul, via scheduler & via API call

* Multiple jobs together is a pipeline

Typical design of pipeline

Group jobs by | Stage @ Job dependencies

Build Test Deploy Production >

@ build - @ test1 - @ auto-deploy - @ deploytopr... [»

@ test2 =
* Build containers * Deploy containers ¢ Deploy to e Interact with
+ Compile code . Deploy code production production system

* e.g., Revert to

* Test code in ,
previous state

containers

12

Gitlab Artifacts

* (Reminder!) Containers by design are stateless.
 State must be stored outside

 Store the output data from the job (if need to)
* Enable sharing of files between jobs

* Can be stored within Gitlab, S3 endpoint or a self hosted
storage instance

Sample .gitlab-ci.yml

[/ Browse templates = (&) Help

stages:
- Build_Builder
- Build_Ansible
- Take_Backup

> Build_Builder: -

Build_Ansible:

image: docker:latest

stage: Build_Ansible

services:
- docker:dind

variables:
DOCKER_HOST: tcp://docker:2375/

30 DOCKER_DRIVER: overlay2

before_script:
- docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD" $CI_REGISTRY

script:
- docker build --pull -t "$CI_REGISTRY_IMAGE/ansible:latest" -f Dockerfile.small .
- docker push "$CI_REGISTRY_IMAGE/ansible:latest"

vyos_backup:
image: "$CI_REGISTRY_IMAGE/ansible:latest"
stage: Take_Backup
script:
- echo "$SSH_PRIVATE_KEY" > /root/.ssh/id_rsa
- ansible-playbook -i inventory vyos-backup.yml
- exit

14

Final Workflow result

Gitlab + CI/CD

Host Machine

Docker

Ansible

’m

Management Node

(group A)
Host 1
[group 8]
Host 2
Host N

Host 2
>
(group B)

Host N
(group B)

15

Questions?

christoff@iij.ad.jp

11J)

Internet Initiative Japan

