
Gitlab CI/CD
Christoff Visser

christoff@iij.ad.jp



Introducing git

2



Introducing git

3



Distributed Workflows

Image source: https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
4

https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows


Where to store the repository?

• GitHub, Gitlab, Bitbucket, AWS CodeCommit

• Gitlab
• Self-host your own instance
• Some more freedom with the CI/CD

5



What is CI/CD

• Continuous Integration (CI)

• Continuous Delivery (CD)

• Continuous Deployment (CD)

6



Where does the code run

• Code typically runs inside a docker container as a job

• One can use available popular containers like alpine, ubuntu, centos, 
or application specific containers 

• One can also build own container using base image of any of the 
available containers if installing multiple packages

7



And where does the job run?

• Typically a runner - can be shared runner offered by popular hosted Git providers 
like Gitlab, Github etc and also dedicated runners which you can host on your 
machine (desktop/server)

• Runner can be a program installed & running on machine or simply a docker 
image with special permissions 

• One can have multiple runners configured in a project & use them as needed 
across various tasks. E.g task 1 on runner on server1, task 2 on runner on server2 
etc

• Good idea to have basic understanding of docker ecosystem to make efficient use 
of CI/CD

8



Key Objective

• Make use of extremely low code, fast to deploy tool like Ansible to 
automate or semi-automate repetitive tasks 

• Trigger Ansible as a docker container running Ansible on runner of 
your choice 

• Trigger (Ansible + Docker) via CI/CD pipelines

9



Stage & Jobs

• Config is divided in stages

• Each stage can have one or more jobs which run in parallel (by default)

• Stages run sequentially

• Any job can have dependency on any other job if needed



Jobs

• Each action is run as a job 

• A job runs inside a docker container 

• Job can have any script (bash, python etc) or Ansible Playbook or anything that is packed in 
container

• Job can have dependency on any other job:
• run job 2 only when job 1 is finished
• run job 3 only when job 1 has failed

• Jobs can be triggered automatically upon commit, via web UI, via scheduler & via API call 

• Multiple jobs together is a pipeline

11



Typical design of pipeline

• Build containers
• Compile code

• Deploy containers

• Deploy code

• Test code in 
containers

• Deploy to 
production

• Interact with 
production system

• e.g., Revert to 
previous state

12



Gitlab Artifacts

• (Reminder!) Containers by design are stateless. 
• State must be stored outside

• Store the output data from the job (if need to)

• Enable sharing of files between jobs

• Can be stored within Gitlab, S3 endpoint or a self hosted 
storage instance



Sample .gitlab-ci.yml

14



Final Workflow result

15



Questions?
christoff@iij.ad.jp


