Introduction to Docker and
Docker Compose

Christoff Visser
christoff@iij.ad.jp

11)

Internet Initiative Japan

mailto:christoff@iij.ad.jp

Objectives

* Understand Docker and Docker Compose concepts
* Learn to install Docker and Docker Compose
* Create and manage Docker images and containers

* Understand how Docker Compose can simplify multi-container
application deployments

Typical software deployment workflow

Download
package

Install
dependencies

Configure
database

Configure
package

d

Challenges with traditional software deployment

1. Takes time to go through documentation, install package and
maintain it

2. Time consuming process to transfer software to a different server
3. Prone to errors and mistakes
4. “Works on my system”

5. Dependency conflicts

Introducing containers

-
——
T

il

I

Virtual Machines vs Containers

* Containers are very lightweight and run the
bare metal to run an app

p
* Unlike VMs, containers come preloaded with

N 4
Containerized Application
. . . Vi I Machi Vi | Machi Vi I Machi
theappllcatlonanddependenCIGS irtual Machine irtual Machine irtual Machine
. . . App A App B App C < o o o w
* One container == One application g g 2 g g
Guest OS Guest OS Guest OS
* Applications can be spread over multiple
CO nta In e rs Hypervisor Docker Engine
* Database - Application— Redis — Web Frontend Host O3 Host S
- J

* Developers build images that contain

applications

What is Docker?

* Lightweight platform to isolate applications using containers

* Docker containers contain all the needed binaries, dependancies,
configurations, etc

* Greatly simplifies deploying, managing and updating applications

* Containers are self contained, making them very portable with only
configuration and data needing backups and migration

Container based software deployment

-

Download
Image

~

-

-

Configure

~

J

d

Installing Docker

* Docker Desktop
e Runs a small linux VM on your machine to run containers in
e Available for Linux, Windows and MacOS (Intel + Apple Silicon)

* Docker Server
* Runs natively
* Available only on linux

* Install instructions: https://docs.docker.com/engine/install/

https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/engine/install/

Docker terms

Docker Engine - The "engine” used to interact with docker containers.

Docker Containers — Self contained applications. Typically 1 container is only running 1 application

Images — Pre-packaged applications that are used to spin up containers. A running image is simply a container

Container Registry — A registry service used to host and share images. These can be pulled and used

Networks — Docker will create it’s own internal docker network on a new bridge called docker0. One can create more networks.
The ports of a container can also be mapped to ports on the host, e.g. port 80 from the container to port 8080 on the host.

Volumes — Volumes can be created and attached to containers

Bind mounts — Used to mount an existing location to a container

Start a new Container from an Image
docker run IMAGE
docker run nginx

...and assign it aname
docker run --name CONTAINER IMAGE
docker run --name web nginx

..and map a port
docker run -p HOSTPORT:CONTAINERPORT IMAGE
docker run -p 8080:80 nginx

..and map all ports
docker run -P IMAGE
docker run -P nginx

...and start container in background

docker run -d IMAGE
docker run -d nginx

...and assign it a hostname

docker run --hostname HOSTNAME IMAGE
docker run --hostname srv nginx

...and add adns entry
docker run --add-host HOSTNAME:IP IMAGE

..and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE

docker run -v ~/:/usr/share/nginx/html nginx

..but change the entrypoint

docker run -it --entrypoint EXECUTABLE IMAGE

docker run -it --entrypoint bash nginx

Show a list of running containers
docker ps

Show a list of all containers
docker ps -a

Delete a container
docker rm CONTAINER
docker rm web

Delete a running container

docker rm -f CONTAINER
docker rm -f web

Delete stopped containers
docker container prune

Stop a running container

docker stop CONTAINER
docker stop web

Start a stopped container
docker start CONTAINER
docker start web

Copy a file from a container to the host
docker cp CONTAINER:SOURCE TARGET

docker cp web:/index.html index.html

Copy a file from the host to a container
docker cp TARGET CONTAINER:SOURCE

docker cp index.html web:/index.html

Start a shell inside a running container

docker exec -it CONTAINER EXECUTABLE

docker exec -it web bash

Rename a container

docker rename OLD_NAME NEW_NAME
docker rename 096 web

Create an image out of container
docker commit CONTAINER
docker commit web

Download an image
docker pull IMAGE[:TAG]
docker pull nginx

Upload an image to a repository
docker push IMAGE
docker push myimage:1.0

Delete an image
docker rmi IMAGE

Show a list of all Images
docker images

Delete dangling images
docker image prune

Delete all unused images
docker image prune -a

Build animage from a Dockerfile

docker build DIRECTORY
docker build .

Tag an image
docker tag IMAGE NEWIMAGE
docker tag ubuntu ubuntu:18.04

Build and tag animage from a Dockerfile
docker build -t IMAGE DIRECTORY
docker build -t myimage .

Save an image to .tar file
docker save IMAGE > FILE
docker save nginx > nginx.tar

Load an image from a tar file
docker load -i TARFILE
docker load -i nginx.tar

Show the logs of a container
docker logs CONTAINER
docker logs web

Show stats of running containers
docker stats

Show processes of container
docker top CONTAINER
docker top web

Show installed docker version
docker version

Get detailed info about an object
docker inspect NAME
docker inspect nginx

Show all modified files in container
docker diff CONTAINER
docker diff web

Show mapped ports of a container

docker port CONTAINER
docker port web

Source:

https://dockerlabs.collabnix.com/docker/cheatsheet/

https://dockerlabs.collabnix.com/docker/cheatsheet/

Running containers demo

Dockerfile - simple

FROM alpine
CMD [“echo”, “Hello World”]

Pull a base Alpine image to build FROM
Runs the CMD echo Hello World

After this command is run it will exit

[Choose OS]

Building a Container - ansible

Install
dependencies

FROM alpine:latest

RUN apk --no-cache add py3-pip build-base \
pvthon3-dev libssh-dev ansible

RUN pip -q --no-cache-dir install ansible-pylibssh
RUN apk --no-cache add ca-certificates

RUN update-ca-certificates

RUN ansible-galaxy collenction install vyos.vyos
ADD ansible.cfg /etc/ansible/ansible.cfg

Install package]

Configure
package

How to build the image

:~/code/temp$ s

Dockerfile
:~/code/temp$ docker build -t hello .

[+] Building 1.1s (5/5) FINISHED docker:default
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 78B 0.0s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> [internal] load metadata for docker.io/library/alpine:latest 1.1s
=> CACHED [1/1] FROM docker.io/library/alpine@sha256:82d1e9d7ed48a7523bdebc18c£6290bdb97b82302a8a9c27d4£e885949ea94d1 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image sha256:09b%9a9daad4cc7£f2bcd4cl17a89e554c99e8d6298360£489450£a40b81049a3bf 0.0s
=> => naming to docker.io/library/hello 0.0s

:~/code/temp$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello latest 09b9a9daad4c 6 weeks ago 7.33MB

:~/code/temp$ docker run hello

Hello World!

:~/code/temp$ [}

Running docker ad-hoc

docker run -d \
--name=smokeping \
-e PUID=1000 \
-e PGID=1000 \
-e TZ=Etc/UTC \
-p 80:80 \
-v /path/to/smokeping/config:/config \
-v /path/to/smokeping/data:/data \
--restart unless-stopped \

lscr.io/linuxserver/smokeping:latest

Docker ad-hoc challenges

* Gets complicated the more arguments are passed
* Hard to remember all previously used arguments

* Easy to misconfigure when running multiple ad-hoc containers

docker-compose.yml

* Single yaml text file for multiple containers

* Easier to read and includes all instructions for all containers
 Simplify creating/attaching volumes to bind to

* Ensure you’re exposing only what you need to

e Simplify upgrading and maintaining containers

Docker compose - smokeping

version: "2.1"
services:
smokeping:
image: lscr.io/linuxserver/smokeping:latest
container_name: smokeping
environment:
- PUID=10060
- PGID=1000
- TZ=Etc/UTC
volumes:
- /path/to/smokeping/config:/config
- /path/to/smokeping/data:/data
ports:
- 80:80

restart: unless-stopped

How to deal with a lot of containers

* Introducing a reverse proxy

* Sits between outside world and your containers

* Map internal port numbers to a DNS hostname on port 80 and 443
* Simplifies deploying SSL certificates

* Simplify dual stacking, make your apps available on IPv6 as well

 Can be run as a docker container as well

Nginx Proxy Manager

* Web interface for simple setup

* Automatically updates SSL
certificates and forces HTTPS

* No need to expose ports, Nginx
Proxy Manager will do it for you

* https://nginxproxymanager.com/

Q S http://example.internal:8975 Let's Encrypt Public e Onl
Q http://192.168.0.10:8090 Let's Encrypt Public ® Onl
Q B http://192.168.0.10:81 Let's Encrypt Public ® Onl
Q - http://example.internal:8159 HTTP only Public ® Onli
Q fon http://rpi.internal:8123 Let's Encrypt Public @ Onli
juxtapose.jc21.net.au
Q . http://example.internal:3001 Let's Encrypt Public ® Online :
e ———

https://nginxproxymanager.com/

Notes on backup

* Docker containers are reproducible. No need to backup

e User data is stored using volumes or bind mounts
* Only these need to be backed up

e Popular tools like Restic Duplicati (can be run as docker container)

* Always encrypt data before storing it on the cloud

Some containers to play with

RIPE Atlas - https://hub.docker.com/r/jamesits/ripe-atlas

 HTML 5 speedtest - https://hub.docker.com/r/adolfintel/speedtest

* iperf3 - https://hub.docker.com/r/networkstatic/iperf3

* Nextcloud - https://hub.docker.com/ /nextcloud

* Docker-speedtest-grafana - https://github.com/frdmn/docker-speedtest-grafana

* Kerberos - https://doc.kerberos.io/opensource/installation#docker

* Linux-server.io - Many great images actively maintained by the open source community

https://hub.docker.com/r/jamesits/ripe-atlas
https://hub.docker.com/r/adolfintel/speedtest
https://hub.docker.com/r/networkstatic/iperf3
https://hub.docker.com/_/nextcloud
https://github.com/frdmn/docker-speedtest-grafana
https://doc.kerberos.io/opensource/installation

Questions?

christoff@iij.ad.jp

11J)

Internet Initiative Japan

