
Introduction to Docker and
Docker Compose

Christoff Visser
christoff@iij.ad.jp

mailto:christoff@iij.ad.jp

Objectives

• Understand Docker and Docker Compose concepts

• Learn to install Docker and Docker Compose

• Create and manage Docker images and containers

• Understand how Docker Compose can simplify multi-container
application deployments

Typical software deployment workflow

Download
package

Install
dependencies

Configure
database

Configure
package Deploy!

Challenges with traditional software deployment

1. Takes time to go through documentation, install package and
maintain it

2. Time consuming process to transfer software to a different server

3. Prone to errors and mistakes

4. “Works on my system”

5. Dependency conflicts

Introducing containers

Virtual Machines vs Containers
• Containers are very lightweight and run the

bare metal to run an app

• Unlike VMs, containers come preloaded with
the application and dependencies

• One container == One application

• Applications can be spread over multiple
containers

• Database - Application– Redis – Web Frontend

• Developers build images that contain
applications

What is Docker?

• Lightweight platform to isolate applications using containers

• Docker containers contain all the needed binaries, dependancies,
configurations, etc

• Greatly simplifies deploying, managing and updating applications

• Containers are self contained, making them very portable with only
configuration and data needing backups and migration

Container based software deployment

Download
image Configure Deploy!

Installing Docker

• Docker Desktop
• Runs a small linux VM on your machine to run containers in
• Available for Linux, Windows and MacOS (Intel + Apple Silicon)

• Docker Server
• Runs natively
• Available only on linux

• Install instructions: https://docs.docker.com/engine/install/

https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/engine/install/

Docker terms
• Docker Engine - The ”engine” used to interact with docker containers.

• Docker Containers – Self contained applications. Typically 1 container is only running 1 application

• Images – Pre-packaged applications that are used to spin up containers. A running image is simply a container

• Container Registry – A registry service used to host and share images. These can be pulled and used

• Networks – Docker will create it’s own internal docker network on a new bridge called docker0. One can create more networks.
The ports of a container can also be mapped to ports on the host, e.g. port 80 from the container to port 8080 on the host.

• Volumes – Volumes can be created and attached to containers

• Bind mounts – Used to mount an existing location to a container

Source:
https://dockerlabs.collabnix.com/docker/cheatsheet/

https://dockerlabs.collabnix.com/docker/cheatsheet/

Running containers demo

Dockerfile - simple

FROM alpine
CMD [“echo”, “Hello World”]

Pull a base Alpine image to build FROM
Runs the CMD echo Hello World

After this command is run it will exit

Choose OS

Install
dependencies

Install package

Configure
package

Deploy!

Building a Container - ansible

How to build the image

Running docker ad-hoc

Docker ad-hoc challenges

• Gets complicated the more arguments are passed

• Hard to remember all previously used arguments

• Easy to misconfigure when running multiple ad-hoc containers

docker-compose.yml

• Single yaml text file for multiple containers

• Easier to read and includes all instructions for all containers

• Simplify creating/attaching volumes to bind to

• Ensure you’re exposing only what you need to

• Simplify upgrading and maintaining containers

Docker compose - smokeping

How to deal with a lot of containers

• Introducing a reverse proxy

• Sits between outside world and your containers

• Map internal port numbers to a DNS hostname on port 80 and 443

• Simplifies deploying SSL certificates

• Simplify dual stacking, make your apps available on IPv6 as well

• Can be run as a docker container as well

Nginx Proxy Manager

• Web interface for simple setup

• Automatically updates SSL
certificates and forces HTTPS

• No need to expose ports, Nginx
Proxy Manager will do it for you

• https://nginxproxymanager.com/

https://nginxproxymanager.com/

Notes on backup

• Docker containers are reproducible. No need to backup

• User data is stored using volumes or bind mounts
• Only these need to be backed up

• Popular tools like Restic Duplicati (can be run as docker container)

• Always encrypt data before storing it on the cloud

Some containers to play with
• RIPE Atlas - https://hub.docker.com/r/jamesits/ripe-atlas

• HTML 5 speedtest - https://hub.docker.com/r/adolfintel/speedtest

• iperf3 - https://hub.docker.com/r/networkstatic/iperf3

• Nextcloud - https://hub.docker.com/_/nextcloud

• Docker-speedtest-grafana - https://github.com/frdmn/docker-speedtest-grafana

• Kerberos - https://doc.kerberos.io/opensource/installation#docker

• Linux-server.io - Many great images actively maintained by the open source community

https://hub.docker.com/r/jamesits/ripe-atlas
https://hub.docker.com/r/adolfintel/speedtest
https://hub.docker.com/r/networkstatic/iperf3
https://hub.docker.com/_/nextcloud
https://github.com/frdmn/docker-speedtest-grafana
https://doc.kerberos.io/opensource/installation

Questions?
christoff@iij.ad.jp

